Boiler Water Chemical Treatment

Outlines

- Introduction
- General Water Chemistry Overview
- The Hydrological Cycle
- Heating Water Systems Overview
- Boiler Internal Treatment
- Problems with Internal Treatment
- Condensate System Operation And Troubleshooting
- Quick Checks

Boiler Water Treatment General Water Chemistry

Why Use Water for Heating?

- Abundant
- Available
- ▲ Inexpensive
- ▲ Safe
- High Specific Heat
- Easy Handling & Storage

Why Isn't Water Perfect for Heating?

Dissolved Solids

Dissolved Gases

Suspended Matter

Heating Water Systems Overview SURFACE WATER

- Lower in dissolved solids
- Higher in suspended solids
- Quality changes quickly with seasons and weather

GROUND WATER

- Higher in dissolved solids and Lower in suspended solids
- Higher in iron and manganese
- ▲ Low in oxygen, may contain sulfide gas
- Relatively constant quality and temperature

Boiler Internal Treatment

Purpose of Internal Treatment

- Inhibit formation of mineral scales
- Inhibit deposition of iron particles
- Maintain efficient heat transfer
- Maintain equipment integrity
- Maintain steam generation capability
- Lengthen time between or eliminate boiler cleanings

Our goal is a 100% reliable and safe source of steam

How Do We Prevent This ?

What control parameters should we be concerned with?

- Neutralized Conductivity
- "O" Alkalinity
- Sulfite residual
- Silica (If you have high Silica Make-Up)
- Hardness
- Internal Treatment Residuals

Neutralized Conductivity

Elevated TDS

- Boiler carryover
- Hardness or Silica Scaling due to higher mineral content, this also can lead to elevated Stack Temps
- Potential Deposition of iron and other foulants

Depressed TDS

- Increased chemical usage
- Increased water usage
- Increased corrosion potential in the boiler due to lower alkalinity/pH due to low cycles

Sulfite

▲ High Sulfite

- Wasted product due to overfeed
- Potential elevated corrosion rates in feedwater tank due to suppressed pH (Catalyzed Sulfite)

Low Sulfite

- Increased corrosion potential due to presence of oxygen in FW due to low sulfite levels
- During offline "stand-by" operation lower sulfite levels can also lead to increased oxygen corrosion potential in internal boiler

Hardness

High Hardness

- Internal boiler scaling from high hardness
- Scaling reduces boiler heat transfer efficiency (excessive fuel usage)

 Scale leads to uneven heating of heat transfer surfaces and premature boiler tube failures

What Causes Problems with Internal Treatment?

- Mechanical Carryover
- Hardness Intrusion in Feedwater
- TDS induced Carryover

What causes Mechanical Carryover?

- Malfunctioning steam separation equipment
- Improper Level Control
- Wide load fluctuations

What are other causes of Carryover?

▲ High TDS in Boiler

- This can lead to severe scaling potential or deposition of incoming minerals such as Silica, Calcium, Magnesium, and iron.
- Elevated chemical levels can lead to carryover and foaming

Condensate System Operation And Troubleshooting

Value/Benefit of Condensate

- Increased condensate return means increased thermal efficiency.
- Increased condensate return means higher boiler cycles.
- Increased condensate return means lower chemical usage.
- Increased condensate return, and better treatment, means longer equipment life.

Why Treat Condensate Systems?

"A typical 100 psi boiler system producing 8,000 pounds steam/hour may save up to \$10,000/year in energy, water, and chemicals by increasing their condensate return 10%."

How Do We Prevent This?

24

What Causes Problems in the Condensate System?

- Carbon Dioxide
- Oxygen
- Ammonia

Where Does Carbon Dioxide Come From?

Breakdown of feedwater alkalinity

- ▲ Air in-leakage
- Organics breakdown

What's the Problem?

Dissolves in the condensate forming carbonic acid

$$CO_2 + H_2O \longrightarrow H_2CO_3$$
Carbon Dioxide Water Carbonic Acid

This drops the pH in the condensate and increases corrosion rates.

Corrosion of Carbon Steel and Copper Depends on pH of Water

Carbonic Acid Corrosion

Results in a thinning and grooving of the Metal surface

Where Does Oxygen Come From?

- Air in-leakage- pumps, traps, vacuum systems, vented receivers
- Inefficient deaerator operation
- Improper sulfite residual from FW tank to Boiler
- Raw water intrusion- pump seals, heat exchanger leaks

What's the Problem?

- O₂ attack results in pitting type corrosion
- Rapid localized metal loss
- Combined corrosion rate of carbon dioxide and oxygen is 10 to 40% faster than the sum of either alone...

How Can We Mechanically Minimize the Problems?

Mechanical Reduction of Corrosion Potential

Reduce air in-leakage

- Vent process equipment
- Implement proper deaeration

Improve Sulfite Control

Reduce feedwater alkalinity

Common Air in-Leakage Sites

- Vacuum systems (most likely source)
- Vented receivers
- Condensate pumps, traps, and valves
- Intermittently operating systems

How Can We Chemically Minimize the Problems?

Trendsetters

Chemical Condensate Treatment

▲ Three Choices:

- Neutralizing Amine
 - (This is most common and we will only be discussing this one.)
- Filming Amines
- Oxygen Corrosion Inhibitors

Neutralizing Amines

Benefits of Neutralizing Amines:

- Effective against carbonic acid corrosion
- Effective against other acids
 - Condensate systems are commonly contaminated with acidic substances
 - Neutralizing amines do not discriminate. They neutralize any acid found.
 - Often this can be seen as an increase in amine demand for no apparent reason

Neutralizing Amines Are Characterized by:

Vapor/Liquid (V/L) Distribution Ratio

- Molecular Weight
- Basicity
- Component Blend Ratio

Vapor/Liquid Distribution Ratios:

Quick Checks

- Softeners Producing <1 PPM of hardness (Not Grains Per Gallon, 1PPM=17.1GPG)
- TDS Control in Boiler (<3500 umhos), (Automation Available)
- Polishing Softener Operation (If Installed)
- Feedwater Temperature (180F Minimum)
- Operator Log Sheet testing (Daily)
- All Pumps Primed and Operating

Conclusions

- Proper water treatment is a combination of mechanical and chemical remediation
- Has significant impact on efficiency and reliability attainment
- Chemical treatment varies based on water tube, fire tube, pressure/temperature.
- Corrosion accelerates with temperature
- Increasing cycles of concentration saves fuel
- Heat from continuous blow down for TDS control can be recouped
- Hot water systems need to be chemically treated too

Other Product Ranges

Water treatment chemicals for Boilers & Cooling tower

Products For RO, Desalination & ME,UF Hygiene Care Specialty Cleaning Solutions

Industrial Cleaning Services Combustion Monitoring Chemicals- Solid & Liquid Fuels Additives

Corrosion Inhibitors, Biocides, Scale Inhibitors For Different Application

ALTRET Industries Pvt. Ltd.

12/2881, ALTRET House, Sayedpura Main Road, Surat-395003.

Ph.: 0261-2451807-808-809/ 9879104403

info@altret.com / crm@altret.com

www.altret.com

CIN: U24299GJ2004PTC044442

